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Estimating forage intake by free-grazing livestock is difficult and expensive. Previous approaches include
behavioral observation, ratio techniques using indigestible markers, mechanical recording of ingestive
jaw motion, and acoustic recording of ingestive behaviors. Acoustic recording shows great potential but
has been limited by the difficulty and time required to manually identify and classify ingestive events. We
present an acoustic recording and analysis system that automatically detects, classifies, and quantifies
ingestive events in free-grazing beef cattle. The system utilizes a wide-frequency acoustic microphone
close to the animal’s mouth, mathematical signal analysis to detect and measure ingestive events, and
streaming data analysis capable of handling an unlimited amount of data. Analysis parameters can be
reconfigured for different animals, forages and other changing conditions. The system measures the
acoustic parameters of ingestive events, such as duration, amplitude, spectrum and energy, which can
razing behavior support further event classification and become the inputs to a forage intake model. We validated our
detection and classification technique against the results of trained human observers based on field
studies with grazing steer. The software detected 95% of manually identified bites in an event-by-event
comparison. Field observations and sound attenuation analysis indicate that sounds from adjacent live-
stock and ambient pastoral environments have an insignificant effect upon the integrity of the recorded
acoustic data set. We conclude that wideband acoustic analysis allows us to identify ingestive events
accurately and automatically over extended periods of time.
. Introduction

Sound metrics, including frequency and amplitude, can be used
o classify and quantify food and ingestive processes. Acoustic anal-
sis was used to quantify texture (crispness/crunchiness) in food.
iu and Tan (1999) studied snack food crispness and demonstrated
hat sound features corresponded (R2 = 0.89) with a trained sensory
anel, concluding that sound signal analysis provided an effec-
ive measure of crispness. Similar data were collected measuring
pple and potato crispness (Zdunek and Bednarczyk, 2006). Acous-
ic envelope detectors were developed (e.g. Stable Micro Systems,
urrey, UK) to quantify the crispness and sensory qualities of bis-
uits and other fresh and processed foods.

Forage intake by grazing livestock is one of the keys to
nderstanding forage grazing system dynamics (Ungar, 1996).

owever, estimating intake of free-ranging livestock is difficult and
xpensive. Technology and improved methods have significantly
mproved our ability to collect grazing behavior data. Procedures
o estimate intake include indirect methods such as ratio or index
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techniques, where intake is calculated via measures of digestibility
(Cordova et al., 1978), and direct methods such as direct behav-
ioral observation; mechanical recording of chews, bites, and jaw
activity using jaw sensors (Chambers et al., 1981; Champion et al.,
1998); acoustic recordings in combination with video recordings
or direct observation (Griffiths et al., 2006; Laca et al., 1992). The
development of jaw sensors and small data recorders (Rutter et
al., 1997) provided a wealth of data regarding ingestive behavior,
particularly because software to classify the data was developed
to quantify jaw movement events (Rutter, 1998). However, esti-
mates of intake require calibration of the relationships between bite
count and forage ingested and modeling variation in bite size. Some
success was achieved by combining video and acoustic recordings
of ingestive behavior combined with short-term studies of mass
difference from 0.14 m2 field-grown, sods placed in metal trays
(Laca and WallisDeVries, 2000). Acoustic methods pioneered by
Laca et al. (1992, 1994), and used by Galli et al. (2006) and Ungar
and Rutter (2006) utilized “an inward-facing microphone mounted

on the forehead of the animal” to record the sounds of bites and
chews. Ungar and Rutter (2006) demonstrated that data collected
using an inward-facing microphone corresponded to data collected
using the IGER Behaviour Recorder in 10-min grazing sessions using
six cattle. Although acoustic methods demonstrate great promise

dx.doi.org/10.1016/j.compag.2011.01.009
http://www.sciencedirect.com/science/journal/01681699
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ig. 1. Photograph of a heifer wearing a halter with attached digital recorder and
icrophone.

or recording and quantifying ingestive events, manual classifica-
ion of these events is difficult and time consuming and in need of
utomation (Ungar and Rutter, 2006). Milone et al. (2009) created
oftware that used hidden Markov models to automate the identifi-
ation and classification of ingestive events in sheep and classified
ites and chews with an accuracy of 58 and 89%, respectively.

In this paper, we describe the development of a digital audio
ecording and automated event classification system that records
razing sounds, detects bite events and compiles grazing event data
bite number and acoustic event parameters). The objectives of this
eport are to: (1) describe the hardware and software components
nd processing steps; (2) compare the spectral characteristics of
ngestive events recorded over wide and narrow frequency ranges,
o demonstrate the need for wide-frequency acoustic data for accu-
ate automated detection of bite events; (3) establish the acoustic
eatures required to differentiate and classify ingestive events; (4)
ocument the amount of acoustic cross contamination from ani-
als grazing nearby; and (5) use manual analysis of audio–video

ecordings to validate the ability of the automated system to detect
nd classify bite events.

. Methods and materials

.1. Field conditions

Ingestive behavior was investigated at West Virginia Univer-
ity Willow Bend Farm near Union, WV, USA (37.547◦N latitude,
0.528◦W longitude). Halter-trained, 16–18 month old, angus-
ross steers or heifers (450–550 kg live weight) were used during
he experiments. The free-ranging animals were maintained on

ixed, perennial pasture consisting primarily of tall fescue (Fes-
uca arundinacea Schreb.), orchardgrass (Dactylis glomerata L.),
luegrass (Poa pratensis L.) and white clover (Trifolium repens L.).
ecording sessions were conducted between the hours of 8:00 AM
nd 1:00 PM local time between July and October over five years.

uring a recording session, the animals were given access to either
ixed perennial pasture, alfalfa–orchardgrass pasture or a pure

tand of triticale (X Triticosecale Wittmack) (a mixture of Trical 2700
nd Trical 336; Resource Seeds Inc. P.O. Box 1319, Gilroy, CA 95021)
hat had been established in early August.
ophone. Insets show details of: (a) recorder in the protective plastic case and (b)

2.2. Hardware components and setup

The recording system (Fig. 1) was designed to have minimal
intrusion on the behavior of the livestock. The system consisted of a
digital recorder (Edirol R-09 24-bit recorder, Program Version 1.20,
Roland Corporation US, 5100 S. Eastern Ave., Los Angeles, CA 90040-
2938) and omni-directional lavalier microphone (Sennheiser ME
2-US, Sennheiser Electronic GmbH & Co. KG, 30900 Wedemark,
Germany) mounted on a 1-inch nylon cow halter (Weaver Leather,
7540 CR 201, PO Box 68, Mt. Hope, OH 44660). The recorder was
placed inside a water resistant plastic enclosure (Pelican 1020
Micro Case, Pelican Products, Inc., 23215 Early Avenue, Torrance, CA
90505) and bolted onto the back strap of the halter to ride behind
the head of the animal. The microphone was attached to the front
strap of the halter 5 cm from the right corner of the animal’s mouth.
Four-inch wide Vetrap tape (3 M Animal Care Products, St. Paul, MN
55144-1000) was used to secure the microphone and microphone
cable to the halter.

Sound data was recorded onto a 4 GB SD memory card (Sandisk
Extreme III SDHC Card Sandisk Corporation, 601 McCarthy Blvd.,
Milpitas, CA 95035) in the Edirol R-09. All recordings were made
at 44.1 kHz sampling rate and 16-bit resolution, providing a nom-
inal 22 kHz recording bandwidth and 96 dB dynamic range, and
stored in the WAV (Waveform Audio) file format. Recorded sound
files contain the voltage output from the microphone, representing
the time-varying acoustic pressure at the microphone diaphragm.
Voltage values can be converted to numerical sound pressure by
applying a calibration factor incorporating microphone transducer
gain (V Pa−1) and amplifier gain. Prior to each recording session,
the recorder input level, sampling rate and bit resolution were set;
the recorder was secured inside the plastic enclosure; and the hal-
ter was secured on the animal. Four to six animals grazed together
during each recording session in paddocks that were approximately
0.1 ha in size.
2.3. Sound file processing and analysis

Files from each recording session were uploaded onto a
Dell Optiplex 745 personal computer (Dell Inc., One Dell
Way, Round Rock, TX 78682, USA) (3.40 GHz Intel Pentium D
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selected based on the differing amplitude and frequency character-
istics of bite vs. non-bite events. Detection values were then refined
through trial and error by comparing automated and manual bite
counts.

Table 1
Parameter settings used to detect bites from acoustic recordings of grazing sessions
with SIGNAL software.

Parameter Value

Low frequency cutoff 17 kHz
High frequency cutoff None
Envelope decay time 15 ms
Detection threshold 0.013 V
Minimum event gap 250 ms
ig. 2. Schematic of testing and validation procedure for automated processing of
teer 751 while grazing mixed pasture on July 28, 2005. Rectangular boxes on the w
re shown in the box below the waveform, as an example of program output.

PU; 4 GB RAM; Microsoft Windows XP Professional, version
.1.2600). Audacity software for Windows (version 1.3.5 beta,
ttp://audacity.sourceforge.net/) was used to prepare the raw WAV
les for analysis. The stereo files created by the R-09 recorder were
educed to monaural files by extracting one channel. A high-pass
lter (rolloff = 24 dB, filter quality = 0.1, cutoff frequency = 600 Hz)
as applied to reduce wind sounds and other low frequency noise.

n future work, we will attempt to eliminate or reduce the need for
his filter by improving microphone wind-resistance.

Identification, enumeration and measurement of bite events
n the pre-processed files were performed using the SIGNAL
ound analysis program for Windows (version 5.00.28, Engi-
eering Design, 262 Grizzly Peak Blvd, Berkeley, CA 94708,
SA, www.engdes.com). SIGNAL analyzed each sound file and
utomatically detected and measured bite events, recording the
easurement data into a log file.
The SIGNAL software processed the monaural WAV files at

pproximately 10 times real–time, i.e., analyzing 10 min of acous-

ic data per minute. The software operates in a two-step process
Fig. 2). First an event is detected, then event parameters are

easured and recorded in a log file. This process is performed
epeatedly, from the beginning of the file to the end with the goal
f detecting every target event in the file. SIGNAL detects events
recordings. The waveform represents acoustic pressure over 10 s, recorded from
rm mark bite events detected by the SIGNAL program. Measured event parameters

based on sound characteristics such as frequency, intensity, dura-
tion and time between events (Table 1). The values we chose for
these parameters collectively define a bite event to the software
and enable it to detect bite events. Initial detection values were
Minimum pulse length 1 ms
Minimum event length 100 ms
Maximum event length 1000 ms
Pre-event time extension 100 ms
Post-event time extension 100 ms

http://audacity.sourceforge.net/
http://www.engdes.com/
Kim Beeman
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Fig. 3. Spectral density plots of: (a) wideband (0–20 kHz) recordings and (b) nar-
rowband (0–8 kHz) recordings of one bite and one chew event of a heifer grazing
vegetative triticale. Spectral energy below 600 Hz was removed from all signals by
a high-pass filter during preprocessing. Spectra were derived from a 16,384-point
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ourier transform, adjusted for 1 Hz spectral bandwidth and smoothed with a 1000-
z rectangular window. Co-plotted spectra are normalized for equal RMS power to
ontrast spectral distribution. Brackets indicate the 17–22 kHz frequency band used
o detect bite events.

Key distinguishing characteristics of bite events, relative to
hewing or other sounds, are the high frequencies produced by the
nitial shearing or ripping of forage. Therefore we programmed the
etection software to evaluate only energy at frequencies between
7 kHz and the upper recording limit of 22 kHz (see Table 1), as
hown in Fig. 3. For purposes of bite detection, we programmed the
oftware to register an event start time (Ts) when event amplitude
n the 17–22 kHz range exceeded a given detection threshold and an
vent end time (Te) when amplitude subsequently dropped below
his threshold. Events were discarded as spurious if, for example,
heir durations were shorter than the minimum designated event
ength or longer than the maximum designated event length.

Detailed examination of time-domain representations of bites
ndicates a low level of bite energy immediately prior to Ts as sound
nergy increases from background levels to the detection threshold
nd immediately after Te as bite energy dissipates and drops below
he threshold. We programmed SIGNAL to include this energy by
sing an event measurement period of Ts − 100 ms to Te + 100 ms
s indicated by the pre-event and post-event time extensions in
able 1. We expect our technique will detect and extract the
ite portion of “chew–bite” events (Laca and WallisDeVries, 2000)
onsisting of a chew followed immediately by a bite. We expect
ontamination due to spurious inclusion of the chew segment will
e small because: (1) the 600 Hz high pass filter utilized prior
o event detection removes much of the chew energy and (2)
he 100 ms time extension matches the small separation depicted
etween the chew and bite segments of the chew–bite event illus-
rated in Laca and WallisDeVries (2000).
Our approach to bite detection is not intended to measure bite
uration precisely but rather to detect automatically the occur-
ence of bite events with high reliability, count bite events and
easure the sound energy produced when forage is sheared in each

ite. For example, our approach to bite detection does not include
nics in Agriculture 76 (2011) 96–104 99

the time taken by the animal to gather forage with the tongue and
bring it into the mouth prior to shearing, a process that will vary
with sward structure and composition.

This phase of our work did not require calculating the abso-
lute energy of acoustic events. However, we did compare relative
acoustic energy levels, for example, to estimate the percentage con-
tamination of bite sounds by adjacent animals (Section 2.5.1). For
this purpose, we calculated the total energy flux of an event, defined
as

∫
J m−2 s−1 dt. Since instantaneous energy flux in a plane acoustic

wave is p2/�0c, where p is pressure and �0 and c are, respec-
tively, the density and propagation velocity of the medium, total
energy flux depends on

∫
p2 dt. Since the amplitude of our acoustic

data is proportional to pressure, our program calculated the time-
integrated squared amplitude for each bite as a measure of relative
event energy.

2.4. Comparison of wideband and narrowband recordings of
ingestive sounds

Our technique for automating detection and classification of bite
events distinguishes bites from chews based on high-frequency
(17 kHz and above) characteristics and therefore requires full band-
width acoustic recordings. To confirm this, we made “wideband”
(0–22 kHz) and “narrowband” (0–8 kHz) recordings of the same
ingestive events. We use these terms to refer to these band-
widths throughout this paper. Wideband recordings were made
with a halter-mounted ME 2 acoustic microphone attached near
the animal’s mouth and narrowband recordings were made with
a forehead-mounted piezoelectric microphone fashioned from a
2.5 cm diameter piezoelectric transducer (Edmunds Scientifics,
Tonawanda, NY 14150, USA). Signals were recorded simultaneously
on separate channels using the stereo capability of the Edirol R-09.

This system was mounted on one heifer grazing triticale
on October 20, 2009 and on another heifer grazing triticale
on October 22, 2009. Five bite events and five chew events
were randomly selected from wideband data and similarly from
narrowband data for a total of 20 exemplars animal–1, to
avoid crowding on the principal components plot. Two tem-
porally synchronized monaural files, one wideband and one
narrowband, were created from the stereo file for each event
using Audacity software. The frequency spectra of the 40 files
(2 animals × 10 events animal−1 × 2 files event−1) were analyzed
by SIGNAL using Fourier transform techniques. For each file, relative
spectral amplitude in dB was determined at 86.1 Hz intervals across
the spectral range from 0 to 22000 Hz. These 256 values for each of
the 40 events were then subjected to principal component analysis
using the PRINCOMP procedure of SAS for Windows, version 9.2
(SAS Institute, Cary, North Carolina 27513, USA).

2.5. Estimating acoustic contamination of recordings

Our recordings of acoustic bite events can be contaminated in
two ways: by bite sounds from other animals and by non-target
noise events such as insects or jet plane flyovers.

2.5.1. Cross-contamination from other bite sounds
Our studies involved multiple animals grazing together in close

proximity, which creates the possibility that a recorded bite from
one animal (the target) may include bite sounds from nearby
(non-target) animals. We call this bite-sound cross-contamination.

Significant cross-contamination can degrade the automated detec-
tion process with false triggers, as well as corrupt quantitative
measurements of detected bite events, and has been noted as
a serious concern (Ungar and Rutter, 2006). We quantify cross-
contamination as the fraction of recorded target bites that contain
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ignificant energy from the bite sounds of non-target animals,
efined as a contaminating energy level of 1% or greater relative
o the target bite sound energy, as measured at the target micro-
hone. The 1% contamination level was selected as the threshold
elow which contamination would have minimal impact on bite
nergy measurements.

We could not directly measure bite-sound cross-contamination
n our field recorded sound signals as a function of animal proximity
ue to the difficulty of obtaining time-correlated acoustic and prox-

mity data without suitably tame and trained animals. Instead we
odeled cross-contamination in the following way. We observed

nter-animal separation distances under field conditions, measured
he average rate of bite production in field recordings, and applied
he physics of sound attenuation in air to calculate contaminating
ite energy at varying distances. The equation for acoustic radia-
ion in free space states that energy attenuates in proportion to
he squared distance from the sound source. Assuming target and
on-target bites have similar source energy, the sound energy of
he non-target bite will exceed 1% of target bite energy when the
on-target animal is less than 10 times as far from the record-

ng microphone as the target animal’s mouth. Since the recording
icrophone is mounted 5 cm from the target’s mouth, we are con-

erned with animal encounters closer than 50 cm, in which the
ontaminating acoustic energy would be 1% (5 cm/50 cm)2 or more
f the target energy.

We observed six heifers while they grazed together within a
6 m × 34 m paddock of vegetative triticale at 20-s intervals over
ve periods of 5–10 min each. At each interval, we counted the
umber of animals whose heads were within 1 m of each other, as
his separation distance was easier to estimate in the field than the
.5 m critical distance. The number of interactions at 0.5 m or less

s estimated by a linear interpolation between 0 and 1 m.

.5.2. Contamination from non-target sounds
Non-target noise events include intermittent sounds, such as

ies, birds, animal vocalizations, aircraft, farm equipment and road
raffic, and continuous sounds, such as crickets and grasshoppers.
s with cross-contamination, our goal was to estimate the contam-

nation of measured acoustic energy in the target bite. Intermittent
ounds – such as aircraft flyovers – are short-duration, potentially
igh-intensity, and usually infrequent. We estimated the statistics
f this contamination in terms of the fraction of recorded bite events
hat would be affected. Continuous sounds – such as insects – are
ong duration and low intensity. For example, large populations of
rickets in our pastures during mid to late summer create continu-
us background sounds that are present in every event in the data
et. For these we estimated the ratio of target to non-target acous-
ic energy and from this ratio we calculated the spurious increase
n target energy as a percentage error. We analyzed two represen-
ative 10-s sound samples, each containing a bite sequence with
ackground cricket sounds and a segment of cricket sounds without
ites. Data was high-pass filtered at 600 Hz to remove wind noise
nd other low-frequency ambient sounds. We calculated the ratio
f bite energy (energy of bite with contaminating cricket sounds
inus energy of cricket-only sounds) to cricket energy for each

ample segment.

.6. Calibration and validation of automated bite detection

Audio/video recordings of grazing activity were used to calibrate
nd validate bite detection parameters used by the SIGNAL software

Fig. 2). Digital camcorders were used to record ingestive behavior
f three animal subjects. Two animals (steers 751 and 527) were
ecorded grazing mixed perennial pasture on July 28, 2005 and
ne animal (steer 710) was recorded grazing alfalfa on Septem-
er 8, 2005. Continuous 15–30 min recordings of each animal on
nics in Agriculture 76 (2011) 96–104

each date were made with Canon Elura 85 Digital Camcorders using
Maxell Mini DV Digital Video Cassette tapes. Audio was transmit-
ted from the halter-mounted acoustic microphone to a camcorder
using a Samson AL1 UHF transmitter mounted on the halter behind
the neck of the animal. Camera operators were stationed outside
of the paddocks where the animals grazed. When multiple animals
were recorded simultaneously on July 28, 2005, the transmitters
were set to different frequencies to isolate transmission of audio
from each animal to separate cameras.

The single audio/video recording from each animal and date was
divided into 1–5 min segments for analysis and converted to MOV
files using iMovie software (Apple Computer, Cupertino, CA 95014).
We created three files representing 15 min of data for steer 751, four
files representing 20 min of data for steer 527, and five files repre-
senting 15 min of data for steer 710. The number of bites recorded
on each MOV file was manually tallied by a trained observer while
reviewing the combined audio and video tracks. Manual classifi-
cation was based on synchronized CD-quality audio and close-up
video that provided visual details of the distinctive mouth and head
movements associated with bite events. To estimate the accuracy of
our counts, we repeated them using a second trained observer. The
audio track was extracted from each MOV file using iMovie to create
digital audio WAV files (44.1 Hz, 16-bit, monaural) for automated
bite analysis using the SIGNAL software.

For each animal and date, one WAV file was chosen at random as
a calibration file for the SIGNAL program. SIGNAL detection param-
eters (Table 1) were adjusted until the SIGNAL-derived bite count
was within 2% of the manual bite count for the calibration file.
Generally, calibration involved minor adjustment to the detection
threshold level among animals grazing the same forage type and
larger adjustments to the threshold between forage types. Other
detection parameters generally did not change. Once calibrated,
the SIGNAL program was then used to count the bites from the
remaining files for that animal and date without any further param-
eter adjustments. In this manner, SIGNAL-derived bite counts were
determined for all of the WAV files.

Automated detection was validated against the manual base-
line in two ways. First, automated and manual bite counts were
compared. The SAS GLM procedure was used to test for significant
differences between the manual and SIGNAL-derived bite counts.
The model was a repeated-measures ANOVA with between subjects
factors. Differences between the two count methods were evalu-
ated by assessing differences in bite count within recordings and
interaction was evaluated to assess any differences in count method
among the animals. We also calculated the standard deviation of
the residual error of the automated bite counts compared to the
manual bite counts.

Second, automated and manual bite sequences were compared
event by event. One 5-min WAV file was selected at random for this
detailed analysis. Using the audio and video recording, a trained
observer recorded the mid-bite time coordinate of every bite event
in the file (blind to the automated result on that file). Manual and
automated bites were then compared one by one. Bites were con-
sidered matched if the manually derived bite time fell between the
start and end times of an automatically detected bite. This analysis
produced three counts: matched bites, false positives (a non-bite
sound detected as a bite by the automated system) and false nega-
tives (a manually identified bite missed by the automated system).

3. Results
The self-contained, halter-mounted recording system was
lightweight and did not appear to restrict animal activity. Direct
observation suggested that the animals exhibited normal grazing
behavior while wearing the halters. The animals were typically
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3.3. Calibration and validation of automated bite detection

Automated bite detection was validated through: (1) compar-
ison of manual and automated bite counts on multiple data files

Table 2
Summary of non-target noise sources.

Noise source Detected as
spurious event

Broadband
energy relative to
bite events

Frequency of
occurrence relative
to bite events

Crickets No Low High in
summer/fall

Flies No Low Low in summer/fall
Cattle

vocalizations
No High Low
ig. 4. Wideband acoustic recordings of: (a) the bite event and (b) the chew event s
nit peak amplitude.

ager to graze fresh forage during the experimental trials after
pending the previous night penned with a limited amount of
orage and/or dry hay. Laboratory tests showed that the 4 GB SD

emory cards could hold up to 6 h and 24 m of sound recordings,
onger than any of the trials conducted thus far. A pair of fully
echarged batteries powered the recorders long enough to fill the
D cards in laboratory tests.

Sound signal data can be expressed as sound intensity vs. time
Fig. 4) or as sound intensity vs. frequency for a given time period
Fig. 3). Both representations provide insight into the recorded
ounds. A typical bite generated sound for a duration of approxi-
ately 0.1 s (Fig. 4a) and the sound spanned a wide frequency range

Fig. 3a). Frequencies below 600 Hz are excluded by the high-pass
lter applied during pre-processing. Amplitude declines between
kHz and 22 kHz, the upper limit of our recording system (Fig. 3a),
ut that range is important for detecting and classifying bite
ignals.

.1. Importance of wideband acoustic recordings

We performed a principal component analysis (PCA) on the
pectra of wideband and narrowband recordings of the same bite
nd chew events from the two animals under study (Fig. 5). The
rst two principal components accounted for 96% of the variation

n the spectral signatures. In Fig. 5a, bites and chews are effectively
eparated on wideband (0–20 kHz) but not narrowband (0–8 kHz)
ata. In Fig. 5b, spectral characteristics are uniform across animals

n wideband data but vary significantly between animals in the
arrowband data. These characteristics make wideband acoustic
ecordings necessary for our approach to the automated detection
nd classification of bite events.

.2. Acoustic contamination of recordings
.2.1. Cross-contamination from other bite sounds
A total of 126 field observations were made of animal proximi-

ies while grazing. 7.1% of these observations involved two or more
nimals closer than 1 m. This yields an estimated interaction rate
f 3.5% for two or more animals closer than 0.5 m.
in Fig. 3a. Signals are displayed as time-domain waveforms and are normalized to

3.2.2. Contamination from non-target sounds
A non-target noise event can intrude in two ways: (1) as a

spurious event mistaken for a target event by meeting the acous-
tic detection criteria and (2) as a contaminating event overlaying
a valid target event and spuriously increasing its energy level.
Table 2 summarizes non-target noise sources, their capacity for
spurious detection, and their magnitude of interference based on
energy level and frequency of occurrence. None of these sources
has sufficient energy within our detection band (17–22 kHz) to be
spuriously detected as a bite event. Intermittent sources (such as
animal vocalizations, aircraft, etc.) have a low rate of occurrence
and will not significantly contaminate the data set. Continuous
sounds such as crickets, when present, will contaminate every
event in the data set. We calculated bite energy to cricket energy
ratio and the resulting spurious increase in measured bite energy as
a percentage error. We obtained bite energy to cricket energy ratios
of 105.1 and 30.2 for our two samples. The worse of these would
increase bite energy by (1 + 1/30.2)/1 = 1.033, for a percentage error
of 3.3%. We consider this error level acceptable in our study.
Birds No Low Low
Jet aircraft No Medium Low
Farm

equipment
No Medium Low

Road traffic No Medium Low
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ig. 5. Results from principal component analysis of frequency spectra comparing
istinguished according to the two animals used in the analysis.

nd (2) a visual event by event comparison of automated and
anual bite events for one 5 min recording. Manual bite counts
ere validated by two independent trained observers, whose

esults correlated closely (r = 0.99; P = 0.0001; n = 12). Fig. 6 illus-
rates the comparison of manual and SIGNAL-derived total bite
ounts for three steers over 60 min of data. Although manual and
utomated bite counts differed by small amounts, the repeated
easures analysis of variance indicated no significant difference

p = 0.84) between the two techniques and no significant interac-
ion (p = 0.53) between count technique and individual steers. The
utomated bite counts exhibited a residual error of 9.1% relative
o the manual bite counts. In the event by event comparison, SIG-
AL identified 154 true bite events (true positives; TP), detected
events that were not bites (false positives; FP) and missed eight
anually identified bite events (false negatives; FN). SIGNAL deliv-

red a true positive detection rate or sensitivity (correctly detected
ites/total true bites) of 0.95 (TP/(TP + FN)) and a positive predic-
ive value (correctly detected bites/total detected bites) of 0.99
TP/(TP + FP)) (Suojanen, 1999).

. Discussion

Our acoustic monitoring system recorded and processed acous-
ic recordings of grazing activity in steers under free-ranging

onditions, including identifying, classifying and quantifying inges-
ive events. Characteristics of the system that contribute to its
uccessful trials include: (1) a light-weight, sturdy, halter-mounted
igital recorder and microphone that had no observable impact on
razing behavior, (2) CD-quality digital recordings (44.1 kHz, 16-
mponent 1

ites and chews from wideband and narrowband recordings and (b) the same data

bit) that included the full frequency range up to 22 kHz, and (3)
SIGNAL software that could utilize the high-frequency characteris-
tics of bite sounds to automatically detect and measure bite event
parameters from digital recordings of any length.

4.1. Importance of wideband acoustic recordings

Previous work has distinguished bites and chews based on tem-
poral characteristics and audible differences in sound quality (Laca
and WallisDeVries, 2000). Previous audio recordings of biting and
chewing events relied on forehead-mounted, inward-facing micro-
phones (Laca and WallisDeVries, 2000; Ungar and Rutter, 2006;
Galli et al., 2006; Milone et al., 2009) and were apparently limited
in frequency range. For example, Laca and WallisDeVries (2000),
show bovine bite and chew spectra limited to approximately 6 kHz,
while Milone et al. (2009) show sheep bite, chew and chew–bite
spectrograms limited to approximately 8 kHz.

Our approach to automatically detecting bite events and distin-
guishing them from chews is founded on the fact that although the
spectral profiles of bites and chews are similar below 8 kHz, they
differ significantly in the 10–20 kHz range. Wideband acoustic data
extending to 22 kHz (Fig. 4a) show bite and chew events as spec-
trally different and distinguishable, while narrowband data limited
to 8 kHz show bite and chew events with similar spectral charac-
teristics (Fig. 3b). Fig. 3a and b represents the same bite and chew

events and are normalized for root-mean-square (RMS) power
to emphasize differences in spectral distribution. Non-normalized
plots (data not shown) depict an even greater bite–chew differ-
ence in the 10–20 kHz range, further increasing the separability
of bites and chews in acoustic data. For this reason, our project is
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ig. 6. Comparison of the number of bites detected by manual review of audio/visu
f the 12 segments is 3–5 min in length.

ased on full frequency range acoustic recordings. The distinction
etween wideband and narrowband data is further confirmed by
rincipal component analysis (Fig. 5). These data also suggest that
ccurate automated bite–chew differentiation would be difficult
sing narrowband data and possibly inconsistent among animals.

.2. Acoustic contamination of recordings

In a manual analysis of individual events, spurious and con-
aminated events can be identified and excluded. However, in an
utomated analysis, any event meeting the mathematical selec-
ion criteria will be included in the measured data set, whether a
alid, spurious or contaminated event. We therefore surveyed the
ange and modalities of non-target noise sources with two ques-
ions in mind: (1) can a non-target event be spuriously accepted
nd (2) if overlayed on a target event, what would be the quanti-
ative impact on event energy. Our goal was to estimate the total
mpact of non-target acoustic events on measured bite energy.

Contamination from bite sounds of adjacent animals has been
aised as an important concern (Ungar and Rutter, 2006). Our anal-
sis indicates that even at a high stocking rate (40 animals per ha),

nly 3.5% of recorded bites would be contaminated at a level of
% or greater (resulting from animals within 0.5 m of each other).
owever, our calculations do not account for three factors that may

urther reduce contamination: (1) the reluctance of these large ani-
als to bring their heads within the 0.5 m critical distance of each
 WAV file

rdings vs. automated processing of the audio portion of the same recordings. Each

other; (2) acoustic shadowing when the animals’ heads are parallel
but opposite in orientation. In half of these instances the recording
microphone, mounted on the side of the jaw, will be acoustically
shadowed from the sounds of the adjacent animal by the head of
the wearer, and (3) temporal dispersion of bite events; since bites
occupy less than 30% of recorded duration, energy contamination
will be reduced proportionally. Considering these factors, we esti-
mate that less than 1% of our bite events will have an energy error
of 1% or greater due to contamination. (Note that contaminating
bites that do not overlay a bite event are rejected by the threshold
setting of the bite event detector and do not enter the data stream.)
Cross-contamination levels may fluctuate with stocking density,
pasture geometry and herd behavior. We expect to evaluate these
assumptions further as grazing dynamics change across the season.

We analyzed contamination from non-bite noise events in two
cases. First, non-bite events that do not overlay a bite event will
not meet the spectral profile of a bite and will be rejected by the
bite detector. Second, when non-bite noise events do overlay bite
events, we estimated the resulting corruption of measured bite
energy. These events divide roughly into high energy events that
occur rarely (such as aircraft flyovers and cattle vocalizations) and

low energy events that occur frequently or continuously (such as
crickets). We calculated bite energy corruption due to a continu-
ous non-target source, cricket sounds and found the result was a
small percentage error. At the other extreme, the energy level of
an aircraft flyover would invalidate any simultaneous bite events,
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ut if a flyover occurs once per hour and shadows 10 out of 1000
ecorded bites during the incident, the net corruption is again in
he 1% range.

.3. Automated bite detection

When we began the effort to automate the identification and
lassification of the sound data, we capitalized on the fact that in
n acoustic recording of grazing, bite events had significant energy
etween 17 and 20 kHz, a region of the sound spectrum with little
ackground noise in pastoral settings. This became the foundation
f our acoustic bite event detector, which we programmed to focus
n the 17–22 kHz range (Fig. 3). With the detection system cali-
rated for a given animal and forage, our data show no significant
ifference between bite counts derived from manual classifica-
ion based on video/audio recordings and automated classification
sing SIGNAL. In practice, our system will require periodic manual
alibration. Further tests are needed to determine the frequency of
alibration, but calibration will almost certainly be required when
nimals are moved to a new forage resource, e.g., from mixed pas-
ure to alfalfa. After the calibration procedure is completed, SIGNAL
an process long files rapidly and with high accuracy.

.4. General considerations

One limitation of the digital recording system is data storage
apacity for the 44.1 Hz, 16-bit recordings. 32 GB SD memory cards
an accommodate 48 h of continuous data recording, but the power
upply must be increased to accommodate that duration, and a
arger power supply increases the equipment’s footprint on the
ivestock. A more promising approach is to implement the detec-
ion, classification and measurement algorithms on an embedded
rocessor and store this dramatically reduced data set instead of
ecorded acoustic waveforms.

Development of a method to estimate grazing livestock intake
s a goal that has been long sought after. Estimating forage intake
s a vital step toward integrating animal performance and forage

anagement in grazing systems and is important to measures
f performance efficiency. Our recording and automated pro-
essing system solves major problems in estimating ingestive
vents in grazing livestock, namely, recording extended periods of
ree-grazing, automatically classifying bite and chew events and
uantifying relative energy per bite.
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